
Proof of Luck:
an Efficient Blockchain Consensus Protocol

Mitar Milutinovic, Warren He, Howard Wu, Maxinder Kanwal

Outline
Background: blockchains, consensus, and SGX

Existing consensus mechanisms

Our paper:

3 basic consensus primitives

Proof of Luck

Conclusion

Outline
Background: blockchains, consensus, and SGX

Existing consensus mechanisms

Our paper:

3 basic consensus primitives

Proof of Luck

Conclusion

Background: blockchains
block = (data, H(previous block))

1 hash protects integrity of entire chain

Efficient to append

Efficient to verify recent blocks

Use case: append-only log

h

data

hash

data

hash

H H
H

...

Background: blockchains
Use case: append-only transaction log

Remember previous payments
to know who has how much money

Still something missing:
What if you know multiple valid blockchains?

Outline
Background: blockchains, consensus, and SGX

Existing consensus mechanisms

Our paper:

3 basic consensus primitives

Proof of Luck

Conclusion

Background: consensus
Two valid chains, same ancestry

Whom has A paid?

Has A even paid anyone? A pays B A pays C

...

Background: consensus
One approach: proof of work

Each block must contain a proof of work
Bitcoin uses a partial hash preimage problem

Prefer the chain with the most work

+2 work

+3 work

Background: consensus
Issues with Bitcoin’s consensus mechanism:

● To prevent ties, it’s slow—10 minutes per block on average
● Time per block varies by chance
● Takes a lot of energy to do the work

Motivation: could do better with trusted execution
SGX is available in consumer CPUs

Outline
Background: blockchains, consensus, and SGX

Existing consensus mechanisms

Our paper:

3 basic consensus primitives

Proof of Luck

Conclusion

Background: SGX
A trusted execution environment

Remote attestation: one can verify* that
a specific computation
ran on suitable hardware and
produced a specific result.

*Provided they trust in the platform vendor, Intel in the case of SGX

Outline
Background: blockchains, consensus, and SGX

Existing consensus mechanisms

Our paper:

3 basic consensus primitives

Proof of Luck

Conclusion

Existing consensus mechanisms
Proof of work - variations for useful work

Proof of Stake / Proof of Burn - depends on specific incentives

Byzantine fault tolerance - fast, participants known, adversary < ⅓

Intel Sawtooth Lake - developed concurrently, simulates Bitcoin mining,
 more mature analysis of compromised CPUs

Outline
Background: blockchains, consensus, and SGX

Existing consensus mechanisms

Our paper:

3 basic consensus primitives

Proof of Luck

Conclusion

TEE Proof of Work
Nonce to prevent replay, as usual

Null name base: anonymous proof (more later)

Restricts ASIC use

Can do work that doesn’t have
efficient verification algorithm

Guaranteed to get a proof after doing work

Still uses lots of energy

Start PoW

Do original
proof of work

(nonce, difficulty)

Attestation
(nonce, difficulty),
name base=null

End

= inside TEE

TEE Proof of Work Time
A busy-wait loop can be used
in TEE-Proof-of-Work

Even better:
just check time from the TEE and yield

Concurrent invocations?

Attestation
(nonce, duration),
name base=null

Check time

Check time

Yield

Start PoT

End

...

= provided by TEE

TEE Proof of Work Time
Concurrent invocations?

Prototype in SGX:
monotonic counters (MC) shared
across instances of same enclave

Implement a mutex.

Assumption:
TEE supports this use case

Increment MC

Check MC

Attestation
(nonce, duration),
name base=null

Check time

Check time

Yield

Start PoT

End

Init

...

TEE Proof of Work Time
Related: Sawtooth Lake distributed ledger, Proof of Elapsed Time

Wait for a randomized amount of time—simulates partial preimage search

efc9a5df...
33bf7353...
31a75a03...
598fc24b...
c052d575...
d824325d...
fd3f6615...
f2c4d943...
d9799954...
fb2eb5e0...
439696f5...
c7882894...
00000000...

~ geometric distributionX

https://github.com/intelledger

TEE Proof of Work Time Ownership
Everyone has same amount of time

Boils down to owning capable CPUs

Don’t bother waiting

Name base:
attestation pseudonym = F(name base, CPU’s key)

CPUs vote with attestations

Scalability issue: need to collect all votes

Start PoO

Attestation
(nonce, difficulty),
name base=nonce

End

Basic consensus primitives

ASIC
resistant

Energy
efficient

Time
efficient Scalable

Bitcoin no no no yes

TEE Proof of work yes no no yes

TEE Proof of time yes yes no yes

TEE Proof of ownership yes yes yes no

Outline
Background: blockchains, consensus, and SGX

Existing consensus mechanisms

Our paper:

3 basic consensus primitives

Proof of Luck

Conclusion

Proof of Luck
Idea: generate random number for each block (assumption: that a TEE can)

Extend block with highest number, prefer chain with highest total

During network split, larger network will likely generate higher max block

0.9 0.8

0.60.5

+1.7 luck

+1.1 luck

Proof of Luck
Strawman design:
generate random number,
generate attestation

PoL

End

Random l

Attestation (nonce, l)

Proof of Luck
Problem 1:
becomes proof of work

Low number? Restart

PoL

End

Random l

Attestation (nonce, l)

Proof of Luck
Problem 1:
becomes proof of work

Solution:
must wait for some time,
a “round time”

PoL

Wait ROUND_TIME

End

Random l

Attestation (nonce, l)

Proof of Luck
Problem 2:
unsynchronized clocks waste luck

0.8

0.7

...

waiting period for block creation

time

Proof of Luck
Problem 2:
unsynchronized clocks waste luck

0.8 ?

0.7

...

waiting period for block creation

time

Proof of Luck
Problem 2:
unsynchronized clocks waste luck

0.8

0.7

...

0.9
waiting period for block creation

?

time

Proof of Luck
Problem 2:
unsynchronized clocks waste luck

0.8 0.5

0.7

...

0.9
waiting period for block creation

time

Proof of Luck
Problem 2:
unsynchronized clocks waste luck

0.8 0.5

0.7

...

0.9
waiting period for block creation

time

Proof of Luck
PoL

Wait ROUND_TIME

End

Random l

Attestation (nonce, l)

Problem 2:
unsynchronized clocks waste luck

Proof of Luck
Problem 2:
unsynchronized clocks waste luck

Solution:

● Continue to receive competing
blocks during ROUND_TIME

PoLRound

Wait ROUND_TIME

End

Random l

Attestation (nonce, l)

Receive blocks

Proof of Luck
Problem 2:
unsynchronized clocks waste luck

Solution:

● Continue to receive competing
blocks during ROUND_TIME

● After waiting, have a chance to
switch

PoLRound

Wait ROUND_TIME

PoLMine

End

Random l

Attestation (nonce, l)

Receive blocks

Proof of Luck
Problem 2:
unsynchronized clocks waste luck

Solution:

● Continue to receive competing
blocks during ROUND_TIME

● After waiting, have a chance to
switch

● Must have same parent as
block chosen at beginning

PoLRound

Wait ROUND_TIME

PoLMine

End

Random l

Attestation (nonce, l)

Save roundBlock = parent

Check parent = roundBlock

Receive blocks

Proof of Luck
Optimization:
slightly delay less-lucky blocks

Don’t broadcast if you’ve already
received a luckier block

PoLRound

Wait ROUND_TIME

PoLMine

End

Random l

Sleep f(l)

Attestation (nonce, l)

Save roundBlock = parent

Check parent = roundBlock

Receive blocks

Analysis
Luck values: l ~ Uniform(0, 1)

Scenario: attacker (m) splits itself from rest of network (M)

Threat model: attacker cannot compromise TEE, cannot split honest participants

h blocks after the fork, we have two chains with luck values:

l
M

(t) ~ max of M Uniform(0, 1)

l
m

(t) ~ max of m Uniform(0, 1)

All independent

1 ≤ t ≤ h

Analysis
Scenario: attacker (m) splits itself from rest of network (M)

h blocks after the fork

?

Attacker’s chain preferred

Analysis

Expectation of product of independent variables

Identically distributed

Chernoff bound

Scenario: attacker (m) splits itself from rest of network (M)

Threat model: attacker cannot compromise TEE, cannot split honest participants

After the fork, exponentially small probability that minority wins

< 1 for optimal s
if M > m

Analysis

Compromised TEE
Scenario: attacker can compromise a few CPUs, not the whole platform

Approach: save top m luckiest numbers in each block,
only mth place (least lucky) one counts

Example (m = 5):

If attacker compromises fewer than m CPUs, they can’t fully control block’s luck

Needs further analysis

0.98 0.96 0.94 0.92 0.90 1.00 1.00 0.98 0.96 0.94

From compromised CPUs

Outline
Background: blockchains, consensus, and SGX

Existing consensus mechanisms

Our paper:

3 basic consensus primitives

Proof of Luck

Conclusion

Conclusion
Properties of Proof of Luck:

● ASIC resistant
● Energy efficient
● Time efficient
● Permissionless and scalable

Summary of assumptions:

● Participants have access to suitable TEE hardware
● TEE programs can detect concurrent invocations
● TEE programs can generate unbiased random numbers

End of presentation.

Proof of time - Implementation
Question: Which monotonic counter?

Monotonic counters accessed by random ID

Storage and communication must be done outside TEE

Proof of time - Implementation
Question: Which monotonic counter?

Answer: All of them.

https://software.intel.com/sites/default/files/managed/d5/e7/Intel-SGX-SDK-Users-Guide-for-Windows-OS.pdf

SGX_ERROR_MC_OVER_QUOTA

The enclave has reached the quota(256)
of Monotonic Counters it can maintain

Proof of time - Implementation
Question: Which monotonic counter?

Answer: All of them.

● create 256 monotonic counters
● yield
● make sure all 256 still have correct value

Compromised TEE
Network may have slightly different blocks (e.g., due to latency)

Merge proofs of luck as long as blocks are “similar”

Similar blocks can be compressed

Analysis
Proportional control of blocks

Outline
Background: blockchains, consensus, and SGX

Existing consensus mechanisms

Our paper:

3 basic consensus primitives

Proof of Luck

Conclusion

