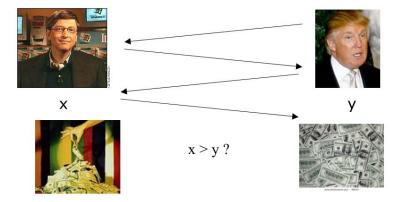
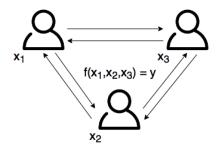
Exploring the use of Intel SGX for Secure Many-Party Applications _{SysTEX'16}

K. A. Kucuk

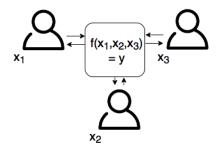

University of Oxford, UK

December 12, 2016


Overview

- 1. Introduction
- 2. Trustworthy Remote Entity (TRE)
- 3. SGX-based TRE
- 4. Results

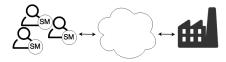
Yao's Millionaires' Problem



Multi Party Computation (MPC)

Limited scalability, Cryptographic primitives

Ideal MPC

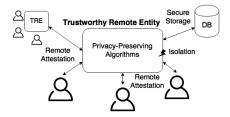

Third Party, Trust Issues

Many Party Application: Road Pricing

Location-based services ...diminishes the privacy

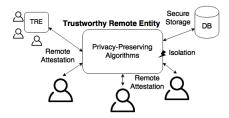
Many Party Application: Smart Grid

aggregate measurements over multiple consumers


A Possible Solution ...

Trustworthy Remote Entity (TRE)

- Based on Trusted Computing
- Essentially a verifiable trusted third party (vTTP)
- ► Comparable to the idealised version (TTP) in the MPC world


TPM-based TRE

Using TXT and TPM

- Final State Attestation (FSA)
- Bare-metal, event-driven
- Privacy Preserving
- Small TCB, Optimized

Other TRE possibilities

Intel SGX; sgxTRE, Middlebox, Compute Provider ARM TrustZone

Contributions

SGX-based TRE

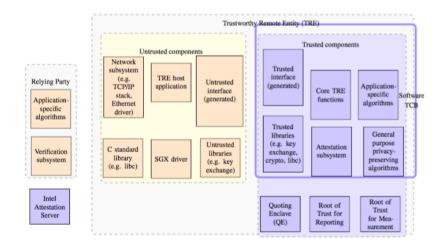
- SGX Benchmarks
- Design and Prototype
- Comparison

Requirements

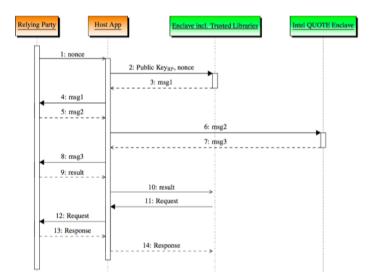
Security and Performance Req.

- Secure Computation and Communication
- Secure Attestation
- Scalability and Latency

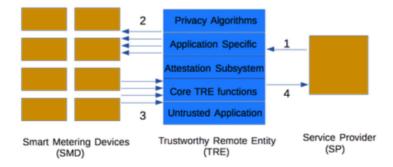
Adversary Model

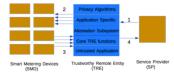

Malicious Operator of TRE

- Dolev-Yao Network Adv.
- SMM, BIOS, OS
- Physical Access


Benchmarking Functionalities

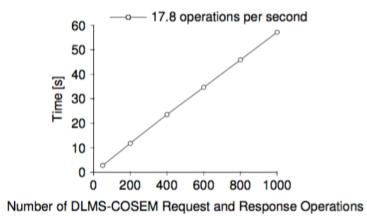
Operation	Stack+Heap	Mean (ms)	Std Dev (ms)
Create Enclave	20 kB	9.986	0.488
	5 MB	24.558	2.154
Initialize Remote Attestation	20 kB	0.040	0.004
	5 MB	0.055	0.012
Initialize Secure Channel	20 kB	0.511	0.056
	5 MB	0.611	0.083
Quote & SIGMA Protocol	20 kB	33.059	1.968
	5 MB	31.764	1.250
Destroy Enclave	20 kB	0.116	0.060
	5 MB	1.158	0.103


Implementation: Architecture

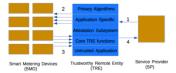

Implementation: Flow

Implementation: Abstract

Experiment

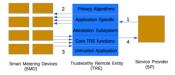

Skylake SGX machine

- Dell Latitude E5570
- June 2016 SGX SDK
- Basic Network
- Simulated SMDs
- DLMS-COSEM


Results: Comparison of TPM-based and SGX-based

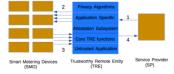
	TPM-TRE	SGX-TRE
Crypto Libraries	14,408	2,529
Communication	5,969	858
Memory Management	1,035	774
C/C++ Library	854	7,528
Core TRE	720	229
Application Specific	507	507
Attestation	221	364
Drivers	1,005	-
SGX Trusted	-	2,968
Total	24,719	15,757

Results: Performance of SGX-based TRE


Security Evaluation

SGX-based TRE

- No Outside Calls
- No Secret dependent access patterns
- SGX features.


Conclusion

SGX-based TRE

- Template for Many Party apps
- Comparison of approaches
- Smaller TCB
- Stronger Adversary

Questions

Any comments?